5.Pedestrian Detection - Cascade classifier

1 minute read

Cascade classifier



1. Casacde classifier : face detection


  • Viola - Jones face detection
    • It could train positive image(face image) and negative image(normal image) and detect accuratly face area.
    • Different point with before methods is that Haar-like feature, robust classifier function based on AdaBoost, rapid operation speed through cascade method are used.


  • Haar-like feature
    • Using the set of filter of rectangle form
    • Extracting the result value pixel value is minused from black rectangle area to whole white rectangle area.


image


  • Cascade classifier
    • Although There is one or two face in normal image, other area is almost non-face area.
    • Conducting Mutistage inspection to skip Non-face are.


image


  • CascadeClassifier code


cv2.CascadeClassifier.detectMultiScale(image, scaleFactor=None, minNeighbors=None, flags=None, minSize=None, maxSize=None) -> result
  • image : input image
  • scaleFactor : image shrinkage ratio. default is 1.1
  • minNeighbors: Specifying how many neighbor rectangle is detected to set to fianal detection area.
  • flags : not use
  • minSize : min object size
  • maxSize : max object size
  • result : numpy.ndarray put in rectangle information of detected object such as (x,y,w,h)


image


2. Hisgogram of Oriented Gradients (Hog)

  • Hog
    • Using oriented gradient of image as feature vector
    • It’s widely used to pedstrian detection mehod at CVPR conference in 2005


image


  • The code Loading pre-learn clssifier coefficient for making HOG descriptor object or detecting pedestrian.


cv2.HOGDescriptor() -> <CascadeClassifier object>
cv2.HOGDescriptor_getDefaultPeopleDetector() -> retval
  • retval : pre-trained feature vector


  • Enrolling SVM classifier coefficient


cv2.HOGDescriptor.setSVMDetector(svmdetector) -> None


  • svmdetector : coefficient for linear SVM classifier


  • HOG multiscale object detection code


cv2.HOGDescriptor.detectMultiScale(img, hitThreshold=None, winStride=None, padding=None, scale=None, finalThreshold=None, useMeanshiftGrouping=None) -> foundLocations, foundWeights


  • img : input image
  • hitTreshold : Threshold for distance of between feature vector and SVM classifer plane
  • winStride : Moving size of shall window
  • padding : Padding size
  • scale : Size ration of search window
  • finalThreshold : Threshold for detection determination
  • useMeanshiftGrouping : The method superimposed window combine
  • foundLocations : Rectangle area information
  • foundWeights : Confidence for rectangle area


  • HOG pedestrian detection result example


image


Leave a comment